
Journal of Pure and Applied Agriculture (2024) 9(2): 95-108 

ISSN (Print) 2617-8672, ISSN (Online) 2617-8680 

http://jpaa.aiou.edu.pk/ 

 

Deep neural network for crop classification using multitemporal data: A 

case study of Sialkot, Pakistan 
 

Shoaib Akhtar1*, Ali Tahir1, Salman Atif1*, Ejaz Hussain1, Muhammad Umair1, Muhammad Shahzad2 and Qudsia 

Gulzar3 

 
1Institute of Geographical Information System, National University of Sciences & Technology (NUST), Islamabad, Pakistan 

2Data Science in Earth Observation, Technical University of Munich (TUM), Munich, Germany & NUST SEECS 
3Center of Geographical Information System, University of the Punjab, Lahore, Pakistan 

 

*Corresponding authors: Salman Atif (salman@igis.nust.edu.pk); Shoaib Akhtar (sakhtar.ms17igis@igis.nust.edu.pk) 

 

Abstract 

 
Agriculture is a fundamental sector in Pakistan’s economy, providing employment to a large portion of the population and 

significantly contributing to national income. However, traditional methods of crop yield estimation, such as crop-cutting 

surveys, are outdated, labor-intensive, and often result in inaccuracies. These methods also tend to be time-consuming, which 

can hinder timely decision-making in agricultural planning and resource management. The advent of freely available spatial 

data, particularly from remote sensing technologies, coupled with artificial intelligence, presents an opportunity to transform the 

way crop yields are monitored and predicted. This study investigates the integration of Geographic Information Systems (GIS) 

and remote sensing imagery with deep learning techniques specifically Convolutional Neural Networks (CNN) and Satellite 

UNET, to enhance the accuracy and efficiency of crop type classification and yield estimation. By leveraging artificial 

intelligence, the proposed method not only automates the process but also improves the precision of yield predictions compared 

to traditional approaches. Initial findings suggest that the application of deep learning models to remotely sensed data allows for 

real-time monitoring, enabling quicker and more informed decisions regarding food production and resource management. The 

primary objective of this study is to develop a reliable, scalable tool for crop yield estimation in Pakistan, facilitating timely 

responses to potential food shortages and contributing to the effective management of food security. This innovative approach 

could revolutionize agricultural practices in Pakistan, offering a modern solution to address both current and future challenges 

in the sector. 
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Introduction 
 

Agriculture is humanity's oldest and most vital practice for 

survival (Ali et al., 2021; Iqbal & Qureshi, 2021). The 

increase in population in recent years has resulted in 

increased demand for agricultural products (Mehmood et 

al., 2021. For a developing country like Pakistan, agriculture 

contributes significantly towards the economic growth of 

the country where it contributes 22.04% towards the GDP 

and offers employment to 35.9% of the population in the 

sector (Usman, 2016). The livelihood of people living in 

rural areas is significantly dependent on the agriculture as 

they are either directly or indirectly associated with this field 

and being an exclusive sector, which combines our business 

innovativeness and modes of life, agriculture sector 

considerably serves, especially in developing countries 

towards poverty reduction, industrial uprising, food security 

along with economic growth (Gardner et al., 2010).  

      Owing to the shift in food consumption patterns and 

rapid population growth, the demand for increased 

agricultural products is all time high and poses a great deal 

of threat to the countries with scarce agricultural resources 

(van Beek et al., 2010; Noroz et al., 2021). Although Pakistan is 

blessed with abundant agricultural resources, however, the 

accelerated growth of population in the region has a direct 

impact on its agricultural products supply and demand ratio 

(Mehmood et al., 2020). According to the recent census-2017, 

the population of Pakistan is 207.68 million and to cater the 

increasing food demand of the population effectively, it is the 

need of time to take extensive measures to address the food 

shortage issues that the country may face in the long run. 

      The integration of technology and E-Governance has proved 

to be a handful tool towards making timely informed decisions, 

from monitoring to mitigating disasters and even averting 

potential calamities before they hit the general population. The 

introduction of Remote Sensing and GIS in agriculture field has 

helped a great deal in understanding factors affecting 

agricultural production by integrating statistical methods and 

modelling techniques. One of the important and noticeable 

practice in improving farming practices and optimizing amounts 

of inputs for best crop performance while keeping the least 

environmental impacts in mind is the use of Precision 

Agriculture (Ge et al., 2011). However, to address the general 
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repetitive nature of RS and GIS which makes the whole 

process time consuming as well as somewhat tiresome, the 

professionals these days are focused on adopting more 

automated approach. To achieve that purpose, automation 

of machine learning and deep learning is being implemented 

into agriculture to fulfil this demand without depleting the 

environment's resources (Mehta, 2016). The concept of 

machine learning along with deep learning is currently the 

hot topic among the masses. 

      Deep learning, a rapidly evolving field of artificial 

intelligence, has transformed several industries, including 

agriculture, by automating traditional methods and 

improving precision (Sharma, 2019; Wason, 2018). In 

agriculture, its applications span crop classification, yield 

estimation, disease detection, and resource management. 

Emerging technologies like Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs), and Artificial 

Neural Networks (ANNs) offer advanced capabilities for 

analyzing large datasets which although takes more time to 

process but enhances decision-making processes, and 

optimize agricultural productivity (Attri et al., 2023). These 

techniques outperform traditional machine learning 

methods by automating complex tasks with greater 

accuracy, making them indispensable for tackling pressing 

agricultural challenges such as food security and efficient 

resource management. 

A prominent area where deep learning excels is in crop yield 

prediction, which involves integrating data from diverse 

sources like weather patterns, soil conditions, and socio-

economic factors. For instance, machine learning models 

like Random Forest (RF), AdaBoost (AB), and Gradient 

Boost (GB), coupled with Randomized Search cross-

validation, have been used to predict the yields of key crops 

such as barley, oats, rye, and wheat. These models, which 

utilize satellite data from NASA missions like GPCP and 

GLDAS, have shown excellent transferability across 

different regions and environmental conditions, achieving a 

remarkable accuracy of R² max = 0.9 (Asadollah et al., 

2024). Such advancements have proven critical in 

addressing food security issues by enabling real-time yield 

estimation and improving water resource allocation, key 

elements for sustainable agricultural development. 

      In addition to yield prediction, deep learning has 

significantly advanced the field of crop-type mapping 

through the integration of spatiotemporal data from remote 

sensing technologies like Sentinel-2, Landsat-8, and 

Sentinel-1. Multitemporal and multispectral data provide 

valuable insights for large-scale crop identification across 

seasons. For example, a 3D U-Net model has been 

developed to fuse spatial and temporal features for crop-type 

mapping, achieving an impressive classification accuracy of 

94.5% (Wittstruck et al., 2024). Similarly, the Deep 

Supervised Hierarchical (DSH) model, incorporating 

DeepLabV3+, channel self-attention, and histogram 

matching, has enhanced spatial and spectral resolution, 

yielding an average accuracy of 90.9% across diverse 

landscapes in regions like China, the U.S., and France (Che 

et al., 2024). Furthermore, deep learning has shown great 

promise in mapping complex agricultural environments such as 

rainfed, smallholder farms where high crop diversity 

complicates spatiotemporal distribution. Hybrid machine 

learning models like RF, Support Vector Machines (SVM), and 

Classification and Regression Trees (CART), deployed on 

platforms like Google Earth Engine, have been highly 

successful in mapping such diverse crop patterns, even in 

regions with limited ground-truth data (Gumma et al., 2024). 

      The primary contributions of this research are threefold. 

First, it integrates advanced deep learning models with 

spatiotemporal remote sensing data for crop-type mapping and 

yield prediction in Sialkot, Pakistan. Second, it introduces a 

scalable framework that enhances accuracy while addressing the 

computational and data limitations prevalent in developing 

regions. Lastly, this study aims to establish a reliable tool for 

real-time agricultural monitoring, providing actionable insights 

to improve food security and sustainable agricultural practices 

in Pakistan. 

 

Materials and Methods 
 

Study area 

 

The district of Sialkot in Punjab Province, Pakistan, was 

strategically selected for this study due to its extensive 

agricultural activity and its suitability for satellite-based crop 

monitoring. Sialkot is located between 32°34'15.2"N 

74°27'57.9"E and 32°24'12.7"N 74°38'48.1"E, with the Indian 

border running along the eastern side. The region’s rich soils, 

combined with its prominent agricultural production, including 

rice, wheat, and potatoes, make it an ideal area for studying crop 

health using remote sensing technologies. This study leverages 

data from the Sentinel-2 satellite (Table 3), which regularly 

passes over Sialkot. Sentinel-2 provides multispectral imagery 

with a revisit time of 5 days and a spatial resolution of 10 meters, 

making it well-suited for tracking the phenological stages of 

crops during critical periods of the growing season. The 

satellite’s ability to capture temporal variations is essential for 

assessing crop growth dynamics, particularly in large, cultivated 

areas like Sialkot, which had 399,000 hectares under cultivation 

in 2017, with 138,000 hectares dedicated to rice and 203,000 

hectares to wheat (Punjab Development Statistics, 2017-18). 

The spatial variability within the district, divided into four 

administrative tehsils—Daska, Pasrur, Sambrial, and Sialkot—

introduces diverse cropping patterns and environmental 

conditions, further justifying the use of remote sensing for 

monitoring. Sentinel-2’s imagery allows for the application of 

vegetation indices such as NDVI, which is crucial for detecting 

differences in crop health across this varied landscape. 

      Additionally, the warm climate, with temperatures reaching 

up to 41.8°C in June, combined with the district’s dense 

population (1,291 people per square kilometer) and the total area 

of 3,016 square kilometers, provides a challenging yet insightful 

environment for studying the impacts of climate and population 

pressures on agricultural productivity. These factors make 

Sialkot a compelling choice for satellite-based crop monitoring, 

enabling the capture of spatial and temporal variations that are 

critical for understanding crop conditions. The data acquired for 
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this study was collected in stages since the essence of each 

piece of information differed which contains crop points 

from the crop reporting office, survey sample points, and 

satellite images of sentinel2A. The survey data was gathered 

in the field using Google Sheets and then combined with 

crop field points provided by the crop reporting office, 

which later verified, processed, and analyzed. Imagery 

retrieved from Google Earth Engine (GEE). GEE has 

proven effective in processing and analyzing large-scale 

satellite data for crop classification (Shelestov et al., 2017; 

Zhang et al., 2022). Researchers have utilized various 

satellite sources, including Sentinel-2 and Landsat, to create 

high-resolution crop maps (Peterson & Husak, 2021; Wijaya 

et al., 2023). These studies have employed different 

classification methods, such as random forests, support vector 

machines, and neural networks, to achieve accurate crop type 

identification (Shelestov et al., 2017; Zhang et al., 2022). The 

integration of historical crop data, like the Cropland Data Layer, 

has been shown to improve classification accuracy and reduce 

the need for extensive ground truthing (Zhang et al., 2022).

 

 
Fig. 1 Study area in district Sialkot 

 

 

Tools and techniques 

 

The identification of appropriate methods and technologies 

for this study was one of the first activities in conducting it. 

Individual goals necessitated various types of research tools. 

The parts that follow describe the techniques being used in 

relation to the research goals, such as conducting a survey, 

developing a fitting model for crop classification, and 

comparing various classification techniques. Two or more 

band’s spectral reflectance are used to calculate satellite-

based indices (Clerici et al., 2017). To demonstrate relative 

abundance of feature of interest (Leaf area, canopy 

chlorophyll content estimation and vegetation cover), these 

indices are being incorporated. It was helpful in clearly 

differentiate the crop and non-crop area, whereas NDVI 

spectral profiles of the mature season were analyzed during 

the mask preparation of different crops. 

 

Data acquisition 

 

The dataset used for this study was divided into three key 

components: Crop Reporting Data, Ground Survey Points, and 

Satellite Imagery (Table 1). The Crop Reporting Data was 

acquired from the crop reporting office, providing information 

such as crop type, crop code, acquisition date, estimated area, 

and geographic coordinates. This data is commonly used in 

agricultural studies to identify crop types across specific 

locations and has proven valuable for mapping crop patterns 

based on calendar dates. To validate the accuracy of the Crop 

Reporting Data, a ground survey was conducted, selecting 100 

random points to compare with the reporting data. This 

validation step enabled the creation of a local crop calendar 

(Table 2) specific to the study area (Fig. 1), enhancing the 

accuracy of crop classification efforts (Table 2). For satellite 

imagery, Sentinel-2A data was selected due to its high spatial 
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and temporal resolution, which is well-suited for 

agricultural monitoring. Using Google Earth Engine, the 

process was semi-automated to ensure efficient data 

retrieval over the period from October 1, 2017, to May 31, 

2020. Sentinel-2’s imagery is widely used for crop 

classification due to its capability to capture phenological 

changes in crops, making it highly compatible with deep 

learning models for precise crop mapping. While some 

atmospheric limitations such as cloud cover were 

encountered, the data remained robust for the intended 

analysis. 

      The map presented below illustrates the geographical 

locations surveyed between December 20, 2017, and February 

23, 2018. Each point on the map represents a specific site where 

data was collected during this period. Sentinel-2 satellite 

imagery, with a spatial resolution of 10 meters per pixel, was 

utilized for the survey, providing high-resolution data for 

detailed spatial analysis. The sample size, based on pixel 

resolution, is reflected on the map, offering a clear depiction of 

the area surveyed. By incorporating both temporal and spatial 

details, this map enhances the contextual understanding of the 

survey's scope and adds significant value to the overall research.

 

Table 1 Dataset used in this research 

 

 

 

 

 

 

 

 

 

Table 2 Local crop calendar for major crops in the region 

Start date End date Crop Start date End date Crop 

2017-11-24 2018-04-26 Wheat 2018-06-07 2018-11-19 Rice 

2017-11-19 2018-05-01 Wheat 2018-07-07 2018-11-24 Rice 

2017-11-24 2018-04-28 Wheat 2018-07-07 2018-11-24 Rice 

2017-11-24 2018-04-28 Wheat 2018-07-07 2018-11-19 Rice 

2017-11-24 2018-05-01 Wheat 2018-07-07 2018-11-19 Rice 

2017-11-24 2018-05-01 Wheat 2018-07-07 2018-11-19 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-07 2018-11-19 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-07 2018-11-24 Rice 

2017-12-07 2018-05-31 Wheat 2018-07-07 2018-11-19 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-07 2018-11-19 Rice 

2017-12-07 2018-05-08 Wheat 2018-07-07 2018-11-19 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-07 2018-11-24 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-27 2018-11-19 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-07 2018-12-02 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-25 2018-11-19 Rice 

2017-11-24 2018-04-28 Wheat 2018-07-07 2018-11-24 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-07 2018-12-19 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-07 2018-12-24 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-07 2018-12-02 Rice 

2017-12-07 2018-05-08 Wheat 2018-07-07 2018-12-02 Rice 

2017-11-24 2018-04-28 Wheat 2018-07-07 2018-12-02 Rice 

2017-12-07 2018-05-01 Wheat 2018-07-05 2018-12-02 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-27 2018-12-02 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-07 2018-12-09 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-07 2018-12-09 Rice 

2017-11-24 2018-04-28 Wheat 2018-07-07 2018-11-24 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-25 2018-11-19 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-07 2018-11-24 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-07 2018-11-24 Rice 

2017-12-07 2018-04-28 Wheat 2018-07-25 2018-12-09 Rice 

Resource Dataset Data type Data quality 

Copernicus Open 

Access Hub 
Sentinel 2A/2B Raster Atmospheric Corrected 

Crop Reporting Office Crop Sample Points Point 
Validated with survey 

points 

GPS data Crop Field Demarcation Points Accurate 

Survey of Pakistan District boundary of Sialkot Polygon Accurate 
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Fig. 2 Spectral signature of wheat 

 

 
Fig. 3 Distribution of sample points in study area 

 

 

Satellite datasets 

 

The Sentinel-2 (S2) comprising of S2A and S2B, two 

identical satellites, captures high resolution optical imagery 

composed of three bands at 60m, six bands at 20m and four 

spectral bands at 10m resolution. The constellation is 

equipped with a multispectral instrument (MSI) to capture 

this optical imagery. The S2 sensor captured optical images 

while cloud-free tiles were downloaded in Level-2A (L2A), 

providing orthorectified Bottom-Of-Atmosphere (BOA) 

reflectance with sub-pixel multispectral registration. 60m 

resolution bands were excluded due to their sensitivity to clouds 

and aerosol while nearest neighbor approach was used to 

resample 20m spectral bands to 10m preserving original pixel 

values.
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Table 3 Sentinel-2 (S2) imagery used in this research 

Image date (Wheat) Year Image date (Rice) Year 

2018-01-27 2018 2018-08-26 2018 

2018-02-17 2018 2018-09-05 2018 

2018-03-04 2018 2018-09-20 2018 

2018-03-09 2018 2018-09-30 2018 

2018-03-19 2018 2018-10-05 2018 

2018-03-29 2018 2018-10-15 2018 

2019-01-28 2019 2018-10-25 2018 

2019-02-22 2019 2019-08-21 2019 

2019-02-27 2019 2019-08-26 2019 

2019-03-09 2019 2019-10-10 2019 

2019-04-08 2019 2019-10-15 2019 

2020-02-07 2020 2019-10-25 2019 

2020-02-17 2020 2019-10-30 2019 

2020-02-22 2020 2020-09-19 2020 

2020-03-03 2020 2020-09-29 2020 

2020-03-18 2020 2020-10-04 2020 

2020-03-23 2020 2020-10-14 2020 

  2020-10-19 2020 

  2020-10-24 2020 

 

Data pre-processing 

 

The acquired dataset, including crop reporting points, 

ground survey points and satellite imagery underwent 

preprocessing. Later surveys were performed to get ground 

data for the verification using random points. To conduct 

surveys, google sheets were used for data entry and being 

integrated with google forms, it helps to integrate google 

form with google sheets, only APIs are required to fetch data 

from form to sheets. These data points (Fig. 3) were 

analyzed, and anomalies were removed. To integrate ground 

survey points with crop reporting points, overlay analysis 

was used and the local crop calendar (Fig. 2) for the study 

area was generated with provided time interval. For satellite 

imagery COPERNICUS/S2 was being used having 10m 

resolution. This satellite acquires high-resolution 

multispectral images for a variety of purposes, including 

vegetation, soil and water cover monitoring, land cover 

change, and humanitarian and catastrophe risk assessment. 

The satellite imagery was acquired through Google Earth 

Engine, which offers the advantage of automated 

preprocessing prior to download, streamlining the workflow 

and reducing manual effort. Optical remote sensing data is 

highly susceptible to atmospheric disturbances, which 

significantly alter the spectral properties of radiation 

reaching the sensor (Pacifici et al., 2014), (Schowengerdt, 

2006). To mitigate these atmospheric effects and enhance 

the accuracy of reflectance values, atmospheric correction 

procedures, aerosol scattering, water vapors absorption and 

cloud masking were applied to the dataset. Moreover, to 

calibrate the pixel values and/or compensate for faults in the 

values, radiometric correction was used. The method 

increases the quality and interpretability of remote sensing 

data. When comparing several data sets across time, 

radiometric calibration and adjustments are very crucial. To 

create a planimetrically accurate image, orthorectification 

removes the effects of picture perspective (tilt) and relief 

(terrain). The orthorectified image that results has a consistent 

scale and features that are shown in their "real" places. 

      The heart of many earth observation efforts is optical remote 

sensing imaging. Many applications take use of the satellite 

data's regular, consistent, and global-scale characteristics, such 

as farmland monitoring, climate change assessment, land-cover 

and land-use categorization, and catastrophe assessment. 

However, one major issue, cloud cover, has a significant impact 

on the temporal and geographic availability of surface 

observations. Since decades, researchers have been studying 

how to remove clouds from optical pictures. In the process cloud 

mask has been used with less than 10% cloud cover area in 

google earth engine which still left behind some missing data in 

the imagery. These missing values were the patches in the tile 

with missing data in varying sizes which made it even harder to 

detect and remove. Python script was written to identify all the 

tiles dataset with missing values and were removed from the 

training and testing part. Four selection criteria were applied 

before downloading data from Google Earth Engine: filter date, 

filter clouds, filter boundary and apply cloud mask. The date 

range criterion defined the temporal extent for the dataset, with 

the earliest allowable date set to 2015. The cloud coverage filters 

excluded images containing cloud cover above a specified 

threshold, ensuring higher-quality data and reducing irrelevant 

entries. For the spatial boundary, a 20×20 km² area of major 

agricultural land was selected to minimize uncertainties. Finally, 

a cloud mask was applied to all remaining images to further 

eliminate any residual cloud interference. 

      In the later step, Normalized Difference Vegetation Index 

was calculated for each of the image tile using band B8 and B4. 

Band 8 represents near infrared whereas band 4 is red band 

which are used to calculate the NDVI. A local crop calendar was 

created by overlaying a stack of NDVI raster with systematically 

generated random points in the region of interest. The random 

points were generated using a stratified random sampling 
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approach to ensure that all the points are uniformly 

distributed while avoiding non-cropland regions such as 

barren land. The values of NDVI were stacked with the 

feature class of random points using a python script, 

resulting in a local crop calendar for the study region from 

02-11-2017 to 01-07-2020. Each raster's NDVI data were 

used to produce a continuous graph for each random point. 

This graph assisted in the identification of crops at all phases 

during the sowing, growing, and harvesting periods. Wheat 

and rice were selected as the two major crops of rabbi and 

kharif, respectively. 

 

Methods 
 

Random Forest (RF) classification 

 

Because of its easy parametrization, feature significance 

estimation in classification, and quick computation time, the 

RF classifier was chosen for this study [3]. As a result, it is 

discussed how to optimize RF hyperparameters for 

vegetation mapping. RF has numerous hyperparameters that 

enable users to modify the forest's structure and size (ntree) 

as well as its unpredictability (for example, the number of 

random variables used in each tree—mtry). The ntree and 

mtry parameters' default values are 500 and the square root 

of the number of input variables, respectively. As a result, 

for hyperparameter tuning, a grid search technique with 

cross validation was utilized in this study, and optimal 

parameter values were chosen as those that gave the best 

classification accuracy. 

 

Support vector machine 

 

The Support Vector Machine (SVM) is a popular pattern 

recognition algorithm. As supervised learning, it may be 

used to solve classification and regression issues. Multi-

perceptron was developed in the 1980s to create a machine 

learning model that can learn like a person. However, there 

were several issues, such as unfavorable convergence to a 

local optimal solution and the number of intermediate layer 

neurons used. SVM solves the issues by using the kernel 

technique on the maximum margin hyperplane (Vapnik, 2013). 

The Gaussian Radial Basis Function (RBF) was used as the 

kernel function in this research. This model was implemented 

using scikit-learn, a Python machine learning module 

(Pedregosa et al., 2011). 

 

Convolutional neural network 

 

Convolutional Neural Networks (CNNs) have been around for 

decades (LeCun et al., 1998),arising from research into the 

visual cortex of the brain (Hubel & Wiesel, 1962) and 

traditional computer vision theory (Dalal & Triggs, 2005), 
(Szeliski, 2010). These have been effectively used in picture 

categorization since the 1990s (LeCun et al., 1998). CNNs, on 

the other hand, did not scale to big applications owing to 

technological restrictions such as a lack of hardware 

performance, a vast volume of data, and theoretical limits. 

Nonetheless, Geoffrey Hinton and his colleagues proved the 

ability of training huge architectures capable of learning many 

layers of features with more complex internal representations 

(Zeiler & Fergus, 2014) during the annual ImageNet ILSVRC 

(Krizhevsky et al., 2012) competition. CNNs have become the 

ultimate emblem of the Deep Learning (Lecun et al., 2015) 

revolution since that breakthrough success, encapsulating all the 

principles that drive the entire new movement. 

      DL has been widely employed in data mining and remote 

sensing applications in recent years. Due to their versatility in 

feature representation and automation capacity for end-to-end 

learning, various DL architectures were used in picture 

categorization research. By including autoencoders into DL 

models, features may be automatically retrieved for 

classification tasks without the use of feature building methods 

(Wan et al., 2017), (Mou et al., 2018). To extract spatial 

characteristics from high-resolution pictures for object 

recognition and image segmentation, 2D CNNs have been 

widely employed in remote sensing research (Kampffmeyer et 

al., 2016), (Audebert et al., 2018). 2D convolution in the spatial 

domain outperformed 1D convolution in the spectral domain in 

crop classification (Kussul et al., 2017). Multiple convolutional 

layers were created in these experiments to extract spatial and 

spectral information from remotely sensed images.

Table 4 CNN structure of custom model used 

Layer (type) Output shape Param # 

InputLayer [(None, 11, 1)] 0 

Conv1D (None, 9, 64) 256 

Conv1D (None, 7, 128) 24704 

Conv1D (None, 5, 256) 98560 

Conv1D (None, 3, 512) 393728 

Conv1D (None, 1, 1024) 1573888 

Flatten (None, 1024) 0 

Dense (None, 2) 2050 

 

Satellite UNET 

 

We used an encoder-decoder network based on the Unet 

model, which was first used in bio-medical segmentation 

(Ronneberger et al., 2015) The structure resembles the letter 

U, as the name suggests. Unet creates a ladder-like structure by 

concatenating encoder feature maps with up-sampled feature 

maps from the decoder at each level. Our network (Satellite 

Unet) starts with a 5-block convolutional neural unit basis, 

which is then followed by a max pooling layer. After each 
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convolutional layer, a ReLU activation function is used. A 

decoder receives the feature maps that have been obtained. 

The feature maps are up sampled by the decoder, resulting 

in predictions with the original spatial resolution. Each 

convolutional layer is preceded by an up-sampling layer in 

the decoder, which starts with a 5-block convolutional 

neural unit foundation. A ReLU activation function follows 

each convolutional layer. As a result, the final feature maps 

are input into a completely 2D convolutional layer with two 

classes and a ReLU activation function, as illustrated in 

Table 4. 

The following are some of the ways that our network 

(Satellite Unet) differs from the traditional (Unet): 

▪ In comparison to UNet, which has 23 

convolutional layers, Satellite UNet has 19 

convolutional layers. 

▪ In Satellite UNet, the filter size is 5 5, but in 

standard UNet, the filter size is 3x3. 

▪ In comparison to Unet, the total number of 

trainable parameters in Satellite Unet is lower. 

▪ In Satellite Unet, the convolution operations are 

padded convolutions, but in Unet, the space 

between succeeding convolutional layers is 

reduced. 

Our model is considerably more appropriate for crop 

classification because of these properties. An NVIDIA GPU 

with CUDA Core 1920 was utilized to train the model. Our 

model was evaluated on a 6-core, 2.6 GHz CPU. 

     

 

Results and Discussion 
 

The first object of the study was based on the survey points 

data and satellite imagery, all the pre-processing on the point 

data and satellite imagery has already been discussed in 

earlier sections. To create these masks, initially 

abnormalities in the dataset were eliminated, such as null values 

in the images, incorrect coordinate points, incorrect crop 

identification etc. Later, these ground survey locations were 

integrated with crop reporting data, and a supervised 

classification was used to determine the cropped area. Only 

major crops were acquired, and labels for model feeding 

developed. The masks generated for wheat and rice for the year 

2018, 2019 and 2020 are shown in (Fig. 5). All these masks 

carry binary data in the imagery i.e., black, and green; black 

color represents no data values whereas green color represents 

the availability of respective crop data in the mask. These masks 

along with satellite imagery of sentinel2A were provided to the 

model for training and testing. The results generated vary from 

68% to 86% accuracy depending upon the model used.        

      In first section two popular methods of machine learning i.e., 

random forest and support vector machine were used to achieve 

the second objective of this study. Using the same system 

specifications stated in the earlier section, it took more than 6 

hours to process and generate the output. The accuracy achieved 

using these two methods was lower in comparison to the other 

methods. The measured accuracy in these two was the lowest in 

all the models. Support vector machine was trained with a n 

samples, n features matrix and achieved a maximum training 

accuracy of 68.01% and testing accuracy of 67.92%, but random 

forest had a substantially higher training and testing accuracy of 

75.28% and 75.19%, respectively. In second section same csv 

data were used to develop convolutional neural network that has 

already been discussed in the earlier section. This model was 

tuned enough to get a maximum of 80.71% accuracy with loss 

from 0.57 to 0.45, with this accuracy (Fig. 4) the predicted map 

(Fig. 5, Fig. 6) showed much better results if compared with 

random forest and support vector machine. This model had 5 

Convo1D layers with a flatten and dense layer to obtain better 

results. Both wheat and rice have been classified with quite 

comprehensive results. The accuracy and loss graph in the (Fig. 

7, Fig. 8), clearly represents the smaller difference between the 

training and testing data.

 
Fig. 4 Training and testing accuracy of SVM, RF, CNN, and Satellite UNET 

 

SVM RF CNN Satellite UNET

Training Accuracy 0.68 0.75 0.86 0.93
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Fig. 5 Crop masks representing crop vs non-crop area: (a) wheat 2018; (b) wheat 2019; (c) wheat 2020; (d) rice 2018; (e) rice 

2019; (f) rice 2020 

 

 
Fig. 6 Crop Prediction masks representing crop vs non-crop area: (a) rice 2018 (b) satellite image 2018 (c) predicted rice 2018 

(d) wheat 2020 (e) satellite image 2020 (f) predicted wheat 2020 

 



Shoaib Akhtar et al                                                                           Journal of Pure and Applied Agriculture (2024) 9(2): 95-108 

104 

 

The accuracy of training and testing started from 0.60 and 

0.68 respectively which increased to approximately 0.75 in 

the next 5 epochs which highlights that the model learnt in 

a quicker way which the features. In the later part for next 25 

epochs, it increased approximately around 0.80 for both training 

and testing.

 

 
              Fig. 7 Custom CNN Accuracy for 30 epochs 

 

 
               Fig. 8 Custom CNN loss for 30 epochs 

 

The last approach used in this study was Satellite UNET 

which gained the best results with the provided dataset. The 

maximum accuracy achieved with this fully connected 

dense network was 0.93 when trained with the data of a 

single year but it dropped to 0.86 when trained with the data 

of 2018, 2019 and 2020. The drop in the accuracy was due 

to the distribution of in the dataset due to multiple year data 

and the difference between them. Accuracy and loss graph 

are shown in the (Fig. 10, Fig. 11), respectively. In the accuracy 

graph it can be clearly seen that in the start there was some 

overfitting with the model which was in later stage dropped and 

a clear difference appears after 45 epochs. Overall accuracy in 

the study is obtained to be 86% using Satellite UNET model 

which has performed well with the provided dataset. Although 

the comparison with respect to accuracy surely gives preference 

to the UNET model but it also requires much power to run the 
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model and predict the results (Fig. 9) but if these results are 

compared with the custom created model with 5 layers of 

deep network it gave 80% accuracy and can be used even on a 

low specification system. 

 

 
Fig. 9 Crop Prediction masks representing crop vs non-crop area: (a) wheat 2019; (b) satellite image 2019; (c) predicted wheat 

2019; (d) rice 2020; (e) satellite image 2020; (f) predicted rice 2020 

 

 
Fig. 10 Satellite UNET Accuracy for 100 epochs. Same differences can be seen in the loss graph which started from 0.45 for 

training and 0.55 for testing and went to 0.1 for training and 0.32 for testing. 
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                 Fig. 11 Satellite UNET Loss for 100 epochs 

 

Conclusion 
 

The research project successfully developed a system to be 

used to recognize and classify rice and wheat using the 

techniques of artificial neural networks and the satellite 

imagery Sentinel-2A. Although the obtained accuracy was 

not perfect, but it helped in generating a system to 

distinguish between two crops. The created model was 

tested and verified to forecast the crop types more accurately 

in comparison to the classical approaches and it turn out to 

be a significant strong tool to be rely on. Substantial 

information was gathered throughout the methodology's 

awareness process to suggest an initial project prototype. 

This prototype demonstrates how to obtain the imagery 

using Google Earth Engine and Python, as well as a possible 

way to network training and testing. The addition of image 

processing, the switch from image classification to object 

identification by changing the kind of neural network from 

custom CNN to Satellite UNET model in the training section 

was the primary modifications made in the final version. It not 

only provided more improved results but also made the whole 

process more robust. The results demonstrate the project's 

proper development, since the project's goals were met 

effectively. The project automated the process of classification 

and improved accuracy as compared to the traditional methods. 

As the model is trained, even with small optimizations in the 

training settings and datasets, the created system can achieve 

acceptable accuracy percentages for further crop types. This 

demonstrates that, even if the acquired accuracy is lower than 

the accuracy of some other systems, the resultant crop 

classification fulfils the expectations, making it a reliable tool 

for effective management of food security and facilitating 

timely responses in potential food shortages. This innovative 

approach has the potential to transform agricultural practices, 

providing a modern solution to address both current and future 

challenges within the sector. 
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